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MARLens: Understanding Multi-agent
Reinforcement Learning for Traffic Signal

Control via Visual Analytics
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Abstract—The issue of traffic congestion poses a significant obstacle to the development of global cities. One promising solution to
tackle this problem is intelligent traffic signal control (TSC). Recently, TSC strategies leveraging reinforcement learning (RL) have
garnered attention among researchers. However, the evaluation of these models has primarily relied on fixed metrics like reward and
queue length. This limited evaluation approach provides only a narrow view of the model’s decision-making process, impeding its
practical implementation. Moreover, effective TSC necessitates coordinated actions across multiple intersections. Existing visual
analysis solutions fall short when applied in multi-agent settings. In this study, we delve into the challenge of interpretability in
multi-agent reinforcement learning (MARL), particularly within the context of TSC. We propose MARLens, a visual analytics system
tailored to understand MARL-based TSC. Our system serves as a versatile platform for both RL and TSC researchers. It empowers
them to explore the model’s features from various perspectives, revealing its decision-making processes and shedding light on
interactions among different agents. To facilitate quick identification of critical states, we have devised multiple visualization views,
complemented by a traffic simulation module that allows users to replay specific training scenarios. To validate the utility of our
proposed system, we present three comprehensive case studies, incorporate insights from domain experts through interviews, and
conduct a user study. These collective efforts underscore the feasibility and effectiveness of MARLens in enhancing our understanding
of MARL-based TSC systems and pave the way for more informed and efficient traffic management strategies.

Index Terms—Traffic signal control, multi-agent, reinforcement learning, visual analytics.
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1 INTRODUCTION

T RAFFIC congestion is a critical and challenging issue
in modern urban development, which leads to signif-

icant financial losses and detrimental emissions [1], [2]. The
implementation of intelligent traffic signal control (TSC)
presents a practical approach to mitigating traffic con-
gestion. This strategy is a fundamental element of smart
cities and has garnered considerable attention from both
industrial and government sectors globally, with an aim to
identify efficient TSC methods.

Despite the widespread adoption of certain adaptive
TSC systems, their effectiveness remains heavily reliant on
traffic flow models and expert knowledge. This reliance
poses limitations on their capacity to dynamically adjust to
real-time traffic conditions [3], [4]. In recent times, reinforce-
ment learning (RL) has emerged as a promising approach
to resolving TSC issues, owing to its ability to learn optimal
TSC strategies through trial-and-error without being con-
strained by pre-set rules [5]. While prior research has dedi-
cated efforts to evaluating the performance of RL-based TSC
techniques for managing traffic at multiple intersections [6],
[7], [8], there has been a notable lack of focus on the decision-
making process employed by these models. Additionally,
previous studies have primarily relied on a limited set of
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metrics, such as reward, queue length, and average travel
time, to assess the efficacy of TSC models. This approach
often lacks the depth required to comprehend the intricate
learning mechanisms inherent to RL-based methods. It is
essential to note that in real-world scenarios, the trial-and-
error nature of TSC models can potentially lead to severe,
and in some cases, fatal consequences. Therefore, the devel-
opment of more interpretable RL models and a comprehen-
sive understanding of the decision-making processes within
TSC models are imperative steps towards enhancing their
reliability and safety.

The field of interpretability in machine learning (ML)
is rapidly evolving within the broader scope of artificial
intelligence. Visual analytics has emerged as an invaluable
tool to enhance the interpretability of ML models [9]. While
there have been extensive studies to unravel the workings
of various deep learning models such as Convolutional
Neural Networks (CNNs) [10], [11], [12], Recurrent Neural
Networks (RNNs) [13], [14] and Generative Adversarial
Networks (GANs) [15], [16], [17] using visualization tech-
niques, there have been relatively few attempts to apply
these methods to enhance the interpretability of RL. This
gap in research primarily stems from the limited exploration
of RL models and scenarios [18]. Researchers have thus far
predominantly employed video games [19], [20], [21], robot
control [22], [23], [24], and simple 2D environments [25],
[26] as their primary domains for visualizing RL models.
However, one notable omission in this body of work has
been the domain of TSC based on RL, which has not re-
ceived the attention it deserves. Additionally, prior research
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has primarily leveraged single-agent RL models as the back-
end for visualization, whereas TSC operates on multi-agent
reinforcement learning (MARL) systems. The utilization of
multi-agent systems entails more than just an increase in
the number of agents; it also necessitates addressing the
intricate interactions that can occur between these agents.
These complex interactions present significant challenges
and can profoundly impact the overall performance of the
system. While some visual analytics systems have been
proposed to explain MARL [27], [28], these solutions may
not be directly applicable to TSC settings. To the best of our
knowledge, no visual analytics solutions tailored explicitly
to the needs of both RL and TSC researchers have delved
into the intricacies of comparing multiple RL agents within
the context of TSC. Closing this research gap requires the
development of advanced visualization tools capable of
shedding light on the inner workings of RL models and their
applications in TSC, especially in multi-agent scenarios.

Nonetheless, three significant challenges must be ad-
dressed to gain a comprehensive understanding of RL-based
TSC methods. (1) Providing a Complete Assessment of
RL Models. In transportation research, RL model perfor-
mance is typically assessed from a holistic road network
perspective [5], often employing commonly used metrics
like reward and queue length. Yet, these metrics do not
reveal the underlying rationale behind each agent’s actions
within a given state. This underscores the pressing need for
a complete assessment of RL models. (2) Unveiling Dy-
namic Relationships in Multi-Agent TSC. In a multi-agent
setting, a single agent’s actions can significantly impact the
performance of other agents [29], consequently influencing
the overall model performance. The dynamic interactions
among multiple agents make it challenging to examine the
intricate relationships among them, including their collab-
oration and contribution to the model’s performance. (3)
Interpreting Complex Decision-making Process of RL-
based TSC. An RL model comprises various components,
including agents, states, and actions. Each agent engages
with the environment, learning from its experiences. How-
ever, the behaviors of these agents can lead to unpredictable
collective patterns that have a substantial impact on the
overall model performance. As a result, articulating and
interpreting the decision-making process of the model at
various levels becomes challenging.

To tackle the aforementioned challenges, we propose a
visual analytics system designed to enhance the exploration
and interpretability of RL-based TSC models. Our approach
initiates with a comprehensive requirement analysis, identi-
fying the essential needs and concerns of domain experts.We
then carefully select a set of metrics, drawing from both
prior research and specific requirements, to extract detailed
insights that characterize RL models comprehensively. Sub-
sequently, we apply Shapley values to pinpoint important
features for different agents and train interpretable models
that unveil decision-making rules governing the relation-
ships between states and the actions of each agent. Addi-
tionally, we perform a multi-level analysis (episode level,
time-period level and time-step level) to gain a deeper
understanding of the decision-making process in RL-based
TSC. To validate our approach, we conduct three distinct
case studies and expert interviews. In summary, the key

contributions of our work can be succinctly outlined as
follows:

• We begin by examining the requirements of domain
experts in the context of TSC and identify key factors
while also delving into the interpretability of RL-based
TSC models.

• We introduce a comprehensive visual analysis system
designed to facilitate an in-depth exploration of MARL
models within TSC scenarios. This system allows users
to evaluate MARL models from a variety of angles,
enhancing their understanding.

• We employ a combination of methods including case
studies, expert interviews, and a user study to assess
the effectiveness and user-friendliness of our system,
thereby providing a well-rounded evaluation of our
approach.

2 RELATED WORK

This section presents two relevant topics, Reinforcement
Learning for Traffic Signal Control and Interpretability of Re-
inforcement Learning.

2.1 Reinforcement Learning for Traffic Signal Control
The traditional pre-set signal control scheme struggles to
efficiently handle complex traffic situations. As a result,
researchers have proposed adaptive signal control methods
that can dynamically adjust signal timing to alleviate traffic
congestion [30], [31]. RL has emerged as one of the most
promising techniques for TSC. It allows control strategies to
adapt in real-time based on the current traffic conditions,
making it a valuable approach [5].

In early time, the application of RL-based TSC often
involved simplifying the modeling process by focusing on
a single intersection. For instance, Shashi et al. [32] em-
ployed the Deep Q-Network (DQN) algorithm to adjust
traffic signals, making decisions based on LSTM-generated
suboptimal actions. Wei et al. [6] enhanced the DQN model
by incorporating a phase-gated learning model, providing
better insights into how the model adapts to real traffic
conditions. Many studies have reported favorable results
when applying RL control to individual intersections [7],
[33], [34]. However, extending this approach to address
multi-intersection challenges presents difficulties. It neces-
sitates the coordination of control models for each inter-
section and involves coping with the high dimensionality
resulting from multiple data sources. To tackle this, Wang
et al. [35] employed a directional adjacency graph to model
the collaborative mechanism among multiple signal lights.
Xu et al. [36] introduced graph attention networks for the
first time in TSC scenarios, enhancing information exchange
among agents.

While prior studies have significantly advanced the field
of TSC, a common shortcoming is the insufficient explana-
tion of their models. Bridging the gap between these ad-
vancements and practical applications requires researchers
to provide compelling justifications for their methodologies.
Hence, the primary goal of this study is to not only con-
tribute to the progress in TSC but also to address the need
for enhanced user understanding of the model’s decision-
making process.
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2.2 Interpretability of Reinforcement Learning

In recent years, there has been a growing interest in en-
hancing the interpretability of artificial intelligence (AI)
research. Most of this research has been concentrated on
improving the interpretability of ML models, particularly in
the domains of classification, decision-making, and action
selection, as documented in studies such as [18], [37], [38].
However, compared to ML, achieving interpretability in the
context of RL poses a more intricate challenge. RL relies on
feedback mechanisms to guide agents in learning optimal
actions within their environment, rather than solely relying
on predefined training data.

Significant progress has been made in enhancing the
interpretability of RL models. However, there exists a no-
ticeable gap in research focusing on RL-based TSC scenarios.
To address this, we introduced a taxonomy of related work
inspired by Stephanie et al. [39], outlining three key ap-
proaches to boost the interpretability of RL models: 1) Ana-
lyzing Feature Importance: This approach strives to identify
the features influencing agents’ actions for a given state.
Hayes et al. [40] directly generated explanations by posing
questions like “when do you do?” to gain insights into the
policies employed by RL agents. Rizzo et al. [41] pioneered
the use of SHapley Additive exPlanations (SHAP) [42] in
RL-based TSC, examining the relationship between traffic
conditions and agent behaviors. 2) Analyzing the Learning
Process and Markov Decision Process (MDP): This ap-
proach breaks down rewards, decomposing them to gain
insights into an agent’s action preferences. For instance,
Zhang et al. [43] proposed the Shapley Q-value algorithm,
which dissects the global reward into local components, fa-
cilitating optimal decision-making in a multi-agent context.
3) Analyzing the Policy Level: This approach illustrates
the long-term behavior of the agent. For instance, Topin
et al. [44] introduced Abstract Policy Graphs to summa-
rize policies and explain agents’ decisions. Guo et al. [45]
focused on generating action advice, using explanations to
enhance the transfer of suboptimal strategies during learn-
ing in multi-agent scenarios. Wollenstein-Betech et al. [46]
utilized Knowledge Compilation and the d-DNNF language
to generate the decision process of the traffic light controller.
Schreiber et al. [47] also applied SHAP to explain how
features of the road network influence the agent’s action
in a given state. However, it’s important to note that these
studies still face some limitations. First, they do not sup-
port multi-level analysis, which could not provide more
comprehensive interpretability solutions. Moreover, there
is a need to provide more effective visual techniques and
interaction functions to strengthen the scalability and level
of comprehension [18].

To enhance the interpretability of RL models, an increas-
ing number of visualization techniques are being employed.
For instance, Wang et al. [20] used an interactive saliency
map to elucidate the learned strategies of agents in Atari
games. Likewise, Gou et al. [19] conducted a visual analysis
of the DQN algorithm, providing detailed insights into
DQN models at four different levels to aid comprehension.
They also proposed a visual design for representing time
series data generated by the model. Moreover, He et al. [22],
Jaunet et al. [48], and Wang et al. [20] introduced systems

designed to assist users in exploring, interpreting, and diag-
nosing RL models based on RNNs. Additionally, Mishra et
al. [26] developed PolicyExplainer, a tool aimed at answer-
ing common RL policy-related questions. However, these
research predominantly focuses on visually interpreting
single-agent behavior in 2D games, which is not adequate
for analyzing MARL models in complex traffic scenarios.

Recently, there has been an emerging interest in explor-
ing the interpretability of MARL through visual analytics.
For instance, Kravaris et al. [27] introduced a visual compo-
nent designed to facilitate the exploration of MARL-based
air traffic flow management. Additionally, Shi et al. [28]
presented a visual analytics system aimed at analyzing
the training process of the MARL model in a grounded
communication environment within a 2D world. However,
these studies cannot be directly applied to our specific target
scenario. Primarily, these works concentrate on demonstrat-
ing data collected directly during the model training phase
and lack the in-depth analysis needed to unveil the decision-
making process of the model. Furthermore, the training
environment in the prior systems is fundamentally distinct
from that of TSC. In TSC scenarios, researchers frequently
resort to utilizing synthetic road networks [49]. This neces-
sitates the provision for integrating a customizable traffic
simulation module into the backend of the visual analytics
system.

This study focuses on gaining insights into MARL in the
context of TSC. Our approach involves introducing a visual
analytics approach designed to clarify the model’s behavior
across different levels. This spans explanations at the time-
step level, extending to the episode level. The approach
involves generating visual summaries for individual agents
at specific episodes, illustrating relationships among multi-
ple agents, and presenting the decision-making process that
links actions and states.

3 PRELIMINARIES

In this section, we clarify how we employ RL to model the
TSC problem and introduce the RL algorithm tailored to our
particular scenario.

3.1 RL-based TSC Scenario

For an RL-based TSC scenario, each intersection of a road
network functions as an agent. Further details, along with
specific specifications and parameters, are presented below:

Definition of Episodes. Episodes are composed of se-
quential time steps that detail the interaction between the
agent and the environment. During each time step, the
agent receives observations of the current state of the en-
vironment, takes a corresponding action, and consequently
transitions the environment to a new state. The agent is then
rewarded based on its executed action.

Definition of States. In the context of the TSC problem,
there have been various proposals for defining the environ-
ment state, encompassing factors like waiting time, queue
length, and vehicle location. However, recent research, as
exemplified in studies such as [7], [50], has suggested that
the incorporation of complex state definitions may not
necessarily yield substantial improvements in performance.
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Instead, it is advisable to employ simpler state definitions,
such as queue length, to effectively capture the environmen-
tal conditions in the TSC problem. Therefore, in this study,
we have chosen to define the state using queue length.

Reward Function. While the fundamental goal of TSC
is to reduce the average travel time for all vehicles, using
travel time directly as a metric in the reward function is not
deemed suitable. This is because travel time doesn’t imme-
diately reflect the impact of TSC, and vehicle movements
can influence their travel time in complex ways [5]. Instead,
a widely adopted factor in the reward function by TSC
researchers is queue length [51]. To address this concern, we
have incorporated the queue length of the entire road net-
work as a component of the reward function. Larger queue
lengths signify more congested road networks, resulting in
lower rewards. Furthermore, from a safety standpoint, it is
preferable to minimize the frequency of phase changes by
traffic lights and extend the duration of the current phase.
Therefore, we have also taken into account the frequency
of phase changes when designing the reward function. The
reward function for the ith intersection (agent) is formulated
as follows:

Rewardi = −(ωqueueQueuei + ωphaseδi) (1)

In the reward function, Queuei represents the queue
length of the ith agent, which is the cumulative queue
length of its entries. Additionally, δi is a binary variable
used to penalize phase changes. When an agent switches
its current phase, δi is set to 1; otherwise, it remains 0.
The frequency of phase changes by an agent determines the
extent of penalty it incurs over a given time period. The
hyperparameters ωqueue and ωphase are introduced, with
values set at ωqueue = 1 and ωphase = 2 in this study, based
on empirical findings.

Definition of Actions. In TSC, researchers commonly
adopt one of two action settings. The first approach involves
maintaining or altering the current phase, which defines
the allowed traffic movements at the intersection, within
a pre-defined and fixed phase sequence [52]. Conversely,
the second approach entails selecting a specific phase from
a pre-defined yet variable phase set [53]. Given that the
first action setting closely mirrors real-world scenarios, we
have selected this approach to demonstrate the efficacy of
our model. In our designed scenario, the phase sequence
consists of two types of phases: “allow North-South (N-S)
to pass” and “allow West-East (W-E) to pass”. Furthermore,
to minimize frequent and abrupt traffic light changes, each
green light phase has been set to a duration of 10 seconds. As
previously mentioned, to mitigate potential hazards arising
from uncertain and frequent traffic light transitions, when-
ever an agent switches its current phase to a different one,
the intersection’s phase remains fully red for the initial three
seconds of the 10-second interval, allowing the intersection
to clear. In summary, the action is limited to a binary value
of 0 or 1, corresponding to the index of a phase in the
predefined phase set.

3.2 Multi-Agent Deep Deterministic Policy Gradient

The Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) [54] is a MARL algorithm developed by Ope-

nAI1. It serves as an extension of the Deep Deterministic
Policy Gradient (DDPG) [55], specifically designed to ad-
dress scenarios involving multiple agents. Unlike alternative
approaches such as Independent Q-learning (IQL) [56] and
QMIX [57], MADDPG employs the Centralized Training
Decentralized Execution (CTDE) strategy [54], a widely
used paradigm for large-scale multi-agent training. This ap-
proach leverages the Advantage Actor-Critic (A2C) frame-
work [58]. Each agent has two independent neural net-
works called actor and critic to make decisions. Specifically,
each agent utilizes the actor to observe local states and
take action. During the training process, the critic makes
use of global information, such as states and actions of
other agents, to evaluate the agent’s current action, which
can guide model training effectively. MADDPG has been
widely used in many fields. Regarding TSC, [59] has proved
that MADDPG performs better against other traditional
RL-based TSC algorithms. Consequently, we have chosen
MADDPG as the primary algorithm for our study.

4 OBSERVATIONAL STUDY

4.1 Experts’ Current Practices and Bottlenecks
To gain practical insights into the TSC problem, specifi-
cally the objective of minimizing average travel time, we
conducted interviews with a panel of six domain experts
(E1-E6). These experts encompassed a diverse range of
expertise, including two professors with over a decade of
experience in TSC and RL (E1-E2), three researchers who
had been actively incorporating RL models into their daily
work for more than two years (E3-E5), and an expert (E6)
specializing in multi-agent control and communication for
approximately 10 years. The valuable feedback gathered
from these experts played a pivotal role in helping us grasp
the existing limitations of RL-based TSC. Throughout the
task analysis phase, we sought their guidance on various
aspects, including setting up the TSC scenario and identify-
ing key priorities in training the RL model.

Challenges in Real-World Traffic Control and Sim-
ulation Tools. During our interviews with experts, two
significant challenges were emphasized. The first challenge
pertains to the complexity of the traffic environment, which
makes it difficult to obtain all the necessary data from real-
world road networks without advanced roadside equip-
ment. The second challenge relates to concerns regarding
traffic safety and order, which make it impractical to test al-
gorithms in real-world scenarios. Consequently, researchers
have turned to simulation platforms such as CityFlow2 and
SUMO3 as invaluable tools for conducting experiments and
evaluations in a controlled environment.

Current Workflow for Researchers in TSC. The experts
we consulted view RL as a promising technique for tackling
TSC challenges. However, there remains significant poten-
tial for improving the model’s exploration, evaluation, and
interpretability. The current workflow for TSC researchers
can be summarized into three key aspects:

(1) Setting up a Simulation Environment. Given the inher-
ent complexity and variability of real-world traffic issues,

1. https://openai.com/
2. https://cityflow-project.github.io/
3. https://www.eclipse.org/sumo/

https://openai.com/
https://cityflow-project.github.io/
https://www.eclipse.org/sumo/
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researchers often choose to abstract the research problems
and simplify the road networks. A comprehensive review
by Noaeen et al. [49] highlighted that around 70% of the ex-
amined TSC studies incorporated synthetic road networks.

(2) Model Training. During the training of RL models, re-
searchers monitor pre-selected critical metrics such as travel
time and reward to assess model performance. Typically,
they generate basic line charts or output training results
directly to the terminal to visualize how these metrics evolve
over episodes. As stated by E1, “we attempted to use Tensor-
Board4 to monitor the training process to capture the connection
between action and state, but this approach falls short in providing
a comprehensive understanding of the model.” Researchers are
generally in search of more robust ways to explore the
training process and offer detailed insights for each episode.

(3) Model Evaluation. Similarly, researchers have primar-
ily focused on enhancing the algorithm’s performance while
giving limited attention to elucidating the decision-making
process of the model. They have also made efforts to ana-
lyze specific states by inspecting agent actions and metrics,
particularly rewards and Q-values, in these states. The
approaches mentioned above suffer from two main draw-
backs. First, they lack convenience in identifying agents and
states of interest. While traffic simulation modules provided
by platforms like CityFlow and SUMO allow researchers
to directly observe states and agents, they do not provide
a comprehensive overview of agent policies or enable the
rapid identification of specific states. Second, these methods
fall short in delivering an efficient and systematic means
of illustrating the model’s decision-making process and the
interactions among agents.

4.2 Experts’ Needs and Expectations
Based on the discussion above, we summarize the follow-
ing four design requirements, each pertaining to different
granularities:

[R1]Episode level: Summarizing the RL Model’s
Training Process. Monitoring the training process of the
RL model is a critical aspect for researchers in assessing its
performance. This monitoring typically involves the obser-
vation of key metrics like reward and travel time, which
assist in refining the model by detecting changes in these
metrics. Thus, it is imperative to offer a comprehensive
summary of the model’s training process to facilitate a
thorough evaluation of its performance.

[R2]Time-period level: Offering a Policy Overview
for Each Agent within a Specified Time Frame.
[R2.1]Describing Temporal Variations in Traffic Conditions in
the Road Network: Across each episode, the traffic conditions
in the road network exhibit temporal changes. Given the
numerous time steps within an episode, it becomes cum-
bersome to inspect all these steps individually to analyze
the evolving traffic situation. Hence, it becomes essential to
provide an overview that aids researchers in comprehend-
ing the fluctuations in traffic conditions. [R2.2]Providing
an Overview of Each Agent’s Policy: Across different time
periods, the traffic conditions within the road network vary,
consequently leading to changes in the policies adopted
by the agents. As articulated by E2, “It would be useful

4. https://www.tensorflow.org/tensorboard

if an agent’s policy can be directly displayed.” Additionally,
the policy of each agent effectively reflects the model’s
training progress. For these reasons, our approach should
summarize and present each agent’s policy within a given
time frame.

[R3]Time-step level: Investigating States, Actions,
Metrics, and Agent Interactions at Each Time Step.
[R3.1]Providing a Visual Summary for Each Agent: Amidst
the training of RL models, a substantial volume of data
is generated, encompassing actions, states, and rewards
for each agent. This abundance of data can pose chal-
lenges in comprehending the intricacies of the model. Re-
searchers find value in obtaining a comprehensive overview
of an episode, enabling them to swiftly identify anoma-
lous states. Additionally, having access to general infor-
mation about each agent proves advantageous. Therefore,
there’s a requirement to furnish a visual summary for each
agent, facilitating efficient analysis of the training data.
[R3.2]Demonstrating the Influence and Relationships Among
Multiple Agents: In MARL, a CTDE framework is frequently
employed for model training. Within this framework, a
centralized controller guides each agent based on global
state, action, and reward information. Decisions made by
one agent can influence others, and their actions may have
repercussions on fellow agents. Consequently, as suggested
by E3 and E4, it becomes crucial to consider the interactions
among different agents and analyze their impact on the
model’s overall performance. Thus, there’s a necessity to
demonstrate the influence and relationships among mul-
tiple agents, contributing to a deeper comprehension of
the model’s behavior. [R3.3]Presenting the Consistent Rules
Governing Actions and States: Training a MARL model can
be a complex undertaking, sometimes resulting in agents
exhibiting unpredictable behavior without clear rationales
for their actions. As stated by E5, “Sometimes agents become
uncontrollable and I don’t know what happened exactly.” In
response to this challenge, the experts recommend that
our system should assist in exploring the decision-making
process of RL models, particularly by facilitating a better
understanding of the connection between an agent’s actions
and the underlying state. Hence, it becomes imperative to
present the consistent rules governing actions and states,
aiding in the comprehension of agent behavior.

[R4]Enabling Simulation Progress Replay. Under-
standing the decision-making process of an RL model based
solely on data can be a formidable challenge. In the realm
of TSC, researchers frequently rely on simulation platforms
for training RL models, as this approach simplifies the
replication of specific scenarios post-training. E2 and E5
emphasized the significance of observing agent behavior in
specific states, underscoring the need for a replay module
to aid researchers in scrutinizing agent behaviors within
particular contexts. Consequently, it becomes imperative to
grant users the capability to replay the simulation progress,
facilitating a more profound comprehension of the model’s
decision-making process.

5 OVERVIEW OF MARLens
In the system pipeline, depicted in Fig. 1, we have two
primary components: the back-end engine and the front-end

https://www.tensorflow.org/tensorboard
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Fig. 1: The system pipeline of MARLens. In the back-end engine, we extract critical information about the agents’ behavior,
relationships, and decision-making processes from three distinct types of data collected. In the front-end visualization, we
offer five coordinated views with rich interactions to facilitate exploration and comprehension of the MARL model.

visualization. Within the back-end engine, our initial steps
involve establishing a TSC scenario and training a MARL
model. This entails inputting the road network, traffic flow,
and optionally, a set of phases, followed by fine-tuning the
hyperparameters until the selected model effectively con-
trols the traffic lights and attains a satisfactory performance
level. Subsequently, we extract the outputs from the trained
networks. This extracted data then undergoes preprocessing
to enable analysis of various aspects, including the agents’
actions, their interactions, and the decision-making process.
On the front-end visualization side, we have meticulously
crafted five coordinated views equipped with rich interac-
tive features, which allow users to comprehend the model’s
decision-making process more effectively.

6 BACK-END ENGINE OF MARLens
In this section, we will elucidate the data processing proce-
dures, encompassing scene initialization, feature extraction,
and the subsequent outputs derived from these processes.

6.1 Scene Initialization
Using the Libsignal5 [60] platform as a basis, we establish a
scenario comprising a 2×2 network, where each intersection
serves as an agent denoted by A0, A1, B0, and B1 (Fig. 2C2).
During our expert interviews, researchers typically overlook
specific details like turning vehicles when studying general
TSC problems of road networks. Consequently, our traffic
flows are restricted to straight movement only. Moreover,
we assign unique identification numbers to each node. An
edge is represented by two nodes. For instance, “A0A1”
refers to the edge connecting the intersection from node A0
to A1.

After approximately 50 training episodes using MAD-
DPG with specific training hyperparameters, such as a
learning rate of 0.0005 and a target network update fre-
quency of once every 10 episodes, the algorithm demon-
strates a tendency toward convergence. Each training
episode is segmented into 1600 time steps, with each step
corresponding to one second of simulation time. Addition-
ally, we divide the traffic flow into four distinct stages to
observe agent behavior under varying traffic conditions.
Each stage has a duration of 400 time steps. The four stages,
outlined in Table 1, are: (1) W-E Only, (2) N-S Only, (3) N-S

5. https://darl-libsignal.github.io/

TABLE 1: The traffic flow settings of our cases.

Stage Direction Traffic Flow (veh/h)

1 W-E 1800
N-S 0

2 W-E 0
N-S 1800

3 W-E 1800
N-S 600

4 W-E 600
N-S 1800

lower than W-E, and (4) W-E lower than N-S. The traffic
flow in the first two stages moves in only one direction,
while the last two stages involve traffic flow in all directions,
with a larger flow in one specific direction.

Upon completion of each training episode, the trained
model will undergo a testing phase to evaluate whether it
has entered a state of over-fitting. The testing scenario will
be identical to the training scenario.

6.2 Data Description

To provide explanations of the MADDPG algorithm, we
have extracted data from the training and testing models
as well as logger files. The extracted data can be broadly
categorized into three groups: 1) Model Data. This group
includes the outputs of both the training and testing models,
which contain various neural network metrics. As described
in Section 3.2, the MADDPG algorithm creates a critic
network and an actor network for each agent. We have
extracted the input and output data from these networks.
Specifically, for the critic network, the network requires
global observation O and action probability P from each
agent to score the corresponding agent’s behavior with
Black box neural networks. As for the actor network, the
network predicts the probability of each action based on the
local observation of the agent. 2) Logger Files. During the
model training or testing phase, a large number of logger
files are generated. These files contain various metrics such
as mean reward, queue length, delay, and travel time, for
each episode. In addition, for each episode, we also obtain
all the observations such as queue length of each lane,
current/last action, and current/last phase for each of the 10
time steps. 3) Simulation Data. LibSignal can generate traffic
simulation data automatically. The phases of intersections
and vehicles’ location will be recorded every time step.

https://darl-libsignal.github.io/
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Simulation data is useful to replay the status of the road
network for detailed analysis.

6.3 Feature Extraction
To identify the key features, we perform additional data
processing from two different perspectives.

Decision-making Process. In the A2C framework, each
agent utilizes neural networks for decision-making. Draw-
ing inspiration from Mishra et al. [26], we independently
train decision trees for both the critic and actor networks to
gain a deeper understanding of how neural networks make
decisions. Specifically, we employ all global information and
action probabilities from all agents to train a regression
tree. This regression tree establishes a connection between
global information and the agent’s evaluation of the current
state, providing insights into which features contribute to a
specific action. Importantly, this method is model-agnostic,
utilizing only state and action information as inputs without
introducing new structures inside the model.

Feature Importance. Another model-agnostic approach
we employ to glean insights into the model training process
is SHAP [42], commonly used for measuring feature impor-
tance. Previous studies [41] and [47] have applied SHAP to
RL-based TSC. Building on their work, we also use SHAP
to analyze the neural networks of each agent and illustrate
feature importance.

7 FRONT-END VISUALIZATION OF MARLens
In this section, we present the visual design of each view
within MARLens, accompanied by an exploration of diverse
design alternatives that underwent evaluation. Our sys-
tem comprises six primary components: the Control Panel,
Training Distribution, Episode Overview, Episode Detail,
Policy Explainer & Snapshot Log, and Simulation Replay.

7.1 Control Panel
The Control Panel (Fig. 2A) is designed to serve as a hub for
presenting training information related to various models.
Each model’s profile encapsulates details regarding both
the training and testing processes. This includes essential
information such as the training episode, time step, and
crucial hyperparameters like the learning rate. Moreover,
the Control Panel affords users the flexibility to seamlessly
switch between the display of training and testing data,
with the system initially set to showcase the training data
as the default view. When a user selects a specific RL model
of interest, the relevant information dynamically updates
below, while other associated views also receive correspond-
ing updates.

7.2 Training Distribution
To offer a concise overview of the model training process
([R1]), commonly used metrics are employed to evaluate
the traffic condition of the road network. These metrics
encompass parameters like speed loss, queue length, reward,
and avg. time, all of which were exclusively derived from the
training data. To analyze the distribution of these metrics
effectively, we devise the Training Distribution (Fig. 2B),

implementing the lineup design [61]. This design choice
enables users to rapidly visualize the distribution of the four
metrics and swiftly locate their desired episode within the
data. Given the substantial differences in the value ranges
of these metrics, we conduct data normalization to ensure
meaningful comparisons. Furthermore, users are allowed to
arrange and sort specific metrics as per their requirements.

7.3 Episode Overview
To offer a comprehensive policy overview for each agent
within a specific time frame ([R2]), the Episode Overview
has been intricately designed to facilitate an in-depth ex-
ploration spanning various time stages and policies. This
component comprises two main sections: Traffic Condition
and Policy Overview.

Traffic Condition. To observe how traffic conditions
evolve throughout an episode ([R2.1]), we count the num-
ber of vehicles present on each road and employ the t-
SNE algorithm [62] to project traffic conditions onto a 2D
plane. Each time step’s traffic condition is represented as a
point in Fig. 2C1. The color of each point corresponds to
its respective time step, with lighter colors denoting earlier
times and darker colors representing later times. The use
of t-SNE ensures that similar traffic conditions are visually
clustered together.

Policy Overview. For a comprehensive understanding
of each agent’s policy ([R2.2]), we construct a represen-
tation of the road network, as depicted in Fig. 2C2. In this
representation, the opacity of the green color is indicative
of the number of vehicles on the road. Each intersection
in the diagram represents an agent. Within each intersec-
tion, we employ four sectors to illustrate the probability
of allowing vehicles to pass, corresponding to the four
cardinal directions. The size of each sector correlates with
the probability it represents, with larger sectors indicating
higher probabilities.

Moreover, users can select a group of points of interest
with a lasso in Fig. 2C1. When points are selected, the
corresponding sectors in the four directions, as well as the
road network, are updated to provide further insights.

7.4 Episode Detail
In order to provide a visual summary for each agent ([R2])
and demonstrate the influence and relationship among
multiple agents ([R3]), the Episode Detail is designed to
provide a thorough exploration of each episode, which
mainly contains two parts, namely state projection and feature
importance and traffic signal phase and metrics.

State Projection and Feature Importance. On the left
part, a circular segment design is adopted to present in-
formation about the four agents in our scene (Fig. 2D1).
A ring is partitioned into four segments (arcs) and their
colors correspond to different agents. Inside the ring, we
utilize the t-SNE algorithm to project the state information,
which includes the current decision action, rewards, current
time step, and the traffic condition of the intersection on the
map, into the 2D plane (Fig. 2D2). This approach ensures
that similar states are situated closer to each other. Before
zooming in, the color of each state point corresponds to
the color of the agent. The opacity of the point encodes
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Fig. 2: Our visualization system, MARLens, provides an in-depth analysis of MARL models in TSC scenarios. The Control
Panel (A) presents parameters in model training and model testing. The Training Distribution (B) provides the distribution
of the metrics and ranks the episode based on the metrics. The Episode Overview (C) presents a summary of traffic
conditions and each agent’s policy at a certain episode. The Episode Detail (D) provides a visual summary for each agent
in an episode, including information of the state, action, and selected metrics, and demonstrates relationships among
multiple agents. The Policy Explainer (E) provides explanations between local state and action, global information and
critic value. The Simulation Replay (F) supports the replay of an arbitrary episode or time step in the simulation situation.
The Snapshot Log (G) saves the snapshots of the Policy Explainer.

the reward. After zooming in, to provide more state in-
formation, we design a glyph, as shown in Fig. 3c. The
center circle encodes reward, with darker shades repre-
senting higher rewards. The inside ring encodes action,
with red representing stop and green representing pass.
The middle ring encodes vehicles in four directions, with
the wider arc representing more vehicles. The outer ring
encodes the time step, with the long arc representing later
time step. Users can click on these state points (glyphs) in
the 2D plane, and other views (e.g., the Policy Explainer)
will be updated correspondingly. Moreover, we use a chord
diagram to display an overview of the influence among
agents (Fig. 3b). A chord from agent A to agent B indicates
some features of A affect B’s decision-making. The width of
the chord encodes the number of features. To avoid visual
clutters, when users hover over an agent, the chord diagram
will only display influences related to this agent. Gradient
colors are used to strengthen agent information. Outside the
arcs, bar charts are used to depict the interplay between
agents and Shapley values of the features. To enable better
comparisons, these bar charts are encoded with the same
color as the corresponding agents and arranged in order of
Shapely values(clockwise). As shown in Fig. 3a, when users

hover over a specific feature, the corresponding feature
name will be displayed, facilitating a more comprehensive
evaluation of each feature’s importance in decision-making.

Fig. 3: Glyph design and interaction in the Episode Detail.
(a) When hovering the mouse over the bar charts (feature
importance), the corresponding feature’s name is displayed
in the center. (b) Utilization of a chord diagram to illus-
trate the relationships among agents. (c) The glyph design
showcasing state information, employing distinct rings to
represent various aspects of the episode, such as time step,
traffic flow, action, and reward.

Traffic Signal Phases and Metrics. On the right side,
to better visualize and compare metrics and actions among
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different agents, we devise four sets of lines and bands
corresponding to each of the four agents. The line chart
effectively illustrates the fluctuations in selected metrics
(Fig. 2D4). Bands along the time axis in Fig. 2D5 represent
traffic signal phases, with different colors signifying phases
selected by individual agents. Users can zoom in to closely
examine metrics and actions at each time step. To facilitate
the quick identification of traffic signal phases, when users
zoom in to a certain degree, icons appear to directly display
traffic signal phases (Fig. 2D6). Users have the flexibility to
select a time step within the bands to update other views.

Design Alternatives. Before settling on the current de-
signs, we explored various alternatives. Initially, Fig. 4a
was employed to showcase agents’ traffic signal phases,
which is a common practice in TSC. However, it could
only display one traffic signal phase per row, leading to
significant space consumption when dealing with numerous
agents and traffic signal phases. As illustrated in Fig. 4b, an
attempt was made to conserve space and facilitate the com-
parison of actions among different agents by using one row
to represent the traffic signal phase information of an agent,
with different colors encoding various traffic signal phases.
Despite these efforts, this design proved less intuitive as
the number of traffic signal phases increased. Subsequently,
the final version (Fig. 4c) was developed to address these
challenges. In this version, an icon is placed in front of
each bar to enable users to quickly identify different traffic
signal phases. The use of line charts effectively illustrates
how metrics change over time.

Fig. 4: Various design alternatives were evaluated for the
components within the Episode Detail. (a) Represents a
commonly employed design in TSC for displaying traffic
signal phases. (b) Introduces an alternative design aimed at
conserving space and facilitating the comparison of agents’
actions. (c) Depicts the current design, employing icons to
directly illustrate different traffic signal phases. Line charts
are utilized to concurrently compare metrics for different
agents.

7.5 Policy Explainer & Snapshot Log

In order to facilitate a better understanding of the decision-
making process of MARL models, we have adopted a tree-
based design to present the policies governing the rela-
tionship between actions and states ([R3]). As illustrated
in Fig. 2E, the root node of the tree represents a selected
“MADDPG” model, and four subtrees are used to encode
rules for four agents, each designated with its respective
agent color. For each agent, a subtree is divided into two
branches: 1) The left branch (Fig. 2E1) elucidates how a critic
arrives at a decision. This involves traversing several feature
judgments, represented by feature ranges in the correspond-
ing agent’s color, to reach a final critic value encoded with
a red bar and distribution. The higher the critic value, the

higher the critic’s evaluation of the agent’s current situation.
The current feature value is depicted as a red bar within the
feature range. 2) The right branch (Fig. 2E2) illustrates the
action-performing process of the actor. Similar to the critic
branch, it involves navigating through feature judgments
before executing an action. The final action distribution is
visualized as a pie chart. The width of a path within the tree
encodes the value range of the associated features. Addi-
tional information is revealed when users hover over feature
judgments and the corresponding roads will be highlighted
in the road map (Fig. 2C2). To support the comparison of
different rules, users can save a snapshot to the Snapshot
Log by clicking the “Save snapshot” button. Users can easily
reload a snapshot by clicking it. In addition, users can hide
the Snapshot Log by clicking the switch button on the top-
right of the Policy Explainer.

Design Alternatives: Prior to adopting the current tree-
based design, several alternative designs were considered.
For instance, as shown in Fig. 5a, one design approach
proposed by [26] involved directly displaying feature names
and feature value ranges in each branch, accompanied by
text explanations. However, this design was found to lack
intuitiveness. Another design, depicted in Fig. 5b, utilized
distribution representations but did not adequately distin-
guish between actor and critic branches, used uniform col-
ors for each agent’s branch, and lacked variation in branch
thickness. Consequently, the current tree-based design was
implemented, introducing distinct colors for agent branches
and utilizing branch thickness to visually encode the num-
ber of rules, as illustrated in Fig. 5c.

Fig. 5: Design alternatives were considered for the Policy
Explainer component. (a) One design approach involved
presenting feature names and their value ranges directly
within each branch, supplemented by accompanying text.
(b) Another design utilized distribution representations but
did not differentiate between branches for different agents
or vary branch thickness to indicate the number of rules.
(c) The current design employs distribution representations
with distinct colors for each agent’s branches and varying
branch thickness to visually represent the number of rules.

7.6 Simulation Replay

To better understand the model’s decision-making process
([R4]), we have incorporated the Simulation Replay mod-
ule, making use of the LibSignal platform. This module
comprises an upper section that displays a road network
(Fig. 2F1) utilized for simulation purposes. When users
select an episode in the Training Distribution, the Simulation
Replay seamlessly transitions to the corresponding episode.
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The lower portion of this module (Fig. 2F3) allows users to
control the simulation. For example, users can pause the
replay process at any point and adjust the replay speed
within a range from 0.1 to 1, enabling a closer examination
of specific moments. Additionally, the Simulation Replay
supports the option to restart the current process, restoring
the original settings for replay purposes. Furthermore, for
quick access to a particular time step, users can select a
specific state within the Episode Detail, which will trigger
the display of the simulation process, commencing from the
specified time step. Similarly, users can close the Simulation
Replay by clicking the switch button on the top-right of the
Episode Overview.

8 EVALUATION

We perform three case studies and conduct interviews with
E1-E6, as introduced in Section 4.1. Section 8.1 details the
cases conducted by E2, E1, and E6 respectively, due to
the representativeness of these cases. Section 8.2 presents
the feedback from all experts. Subsequently, we recruit an
additional 12 participants and conduct a user study to
assess the performance of MARLens in system workflow,
visual design and interaction, as well as system usability, as
discussed in Section 8.3.

8.1 Case Study

8.1.1 Case I: Overview of Model Training
E2 focuses on crafting RL models and often needs to sum-
marize the performance of model training. His actions are
illustrated in Fig. 6I.

To gain a macroscopic understanding of the model train-
ing situation, he typically examined the Training Distri-
bution (Fig. 6A1). Sequentially analyzing the episodes, he
observed that the model training was effective, experiencing
some fluctuations in the early stages but becoming more
stable later on. Conversely, episodes with larger rewards
were predominant in the later stages (Fig. 6A4), providing
further evidence of the model’s effectiveness.

Then, E2 navigated to the Episode Overview to scru-
tinize the agents’ policies. Observing the road network’s
traffic conditions in Fig. 6B1, he identified four distinct
clusters corresponding to the four types of traffic flow
settings. The red rectangles in Fig. 6B1 denoted transitions
between different traffic flows. E2 chose the first stage of
traffic flow (W-E direction only) in the initial episode. In
Fig. 6B2, each sector’s size was nearly identical, indicating
that all agents assigned almost the same probability to the
green light in each direction. E2 remarked, “Agents appear to
take actions randomly, and their strategy for allowing vehicles to
pass is confusing and inefficient.” In contrast, the last episode
in Fig. 6B3 showed larger sectors in the W-E direction than
in other directions. All agents permitted only west and
east bound vehicles to pass, aligning with the traffic flow’s
direction.

Subsequently, E2 used the Episode Detail to assess
actions and metrics’ temporal changes. He chose agent
A1 as an example, focusing on the critic value to ob-
serve the model’s grasp of global information. For ac-
tions, he observed frequent color changes in the bands,

signifying continuous policy exploration in the first
episode (Fig. 6C1). Conversely, the strategy stabilized in
the last episode (Fig. 6C3) with A1’s actions distinctly
segmented into four stages corresponding to the four-stage
traffic flow. The line chart in Fig. 6C1 and C2 revealed
that the critic value in the first episode fluctuates within
a narrow range, indicating the model’s inability to evaluate
the entire road network’s traffic condition. Conversely, in
the last episode, the critic value accurately reflected the road
network’s traffic conditions. A higher critic value denoted
better traffic conditions. E2 leveraged the Simulation Replay
to directly inspect A1’s traffic condition. For instance, in the
last traffic flow stage where N-S direction is the primary
traffic flow direction, the first episode, due to trial-and-error,
sometimes leads to severe congestion (Fig. 6C2). Conversely,
in the last episode, the intersection’s traffic condition was
more orderly. A1 kept the N-S direction green until queues
in the W-E direction accumulated, prioritizing the main
traffic flow (Fig. 6C4).

Continuing with the reward and state analysis,
E2 explored A1’s states during the last traffic flow
stage (Fig. 6D1). Given the model’s proficiency in the last
episode, his focus shifted accordingly. Notably, he observed
two clusters in Fig. 6D2 , indicating high similarities. The left
cluster was smaller than the right, prompting his to zoom in
for a more detailed examination. It became evident that the
left cluster represented states when A1 activated the green
light in the W-E direction. As shown in Fig. 6D4, the larger
area of purple sectors in the W-E direction suggested more
vehicles waiting in that intersection direction. Conversely,
the right cluster denoted states when A1 activated the green
light in the N-S direction. The upper part of this cluster
indicated lower rewards, signifying congestion in the main
traffic flow direction (N-S direction) (Fig. 6D3).

In summary, E2 concluded that the model underwent
effective training with the increasing number of training
rounds. All metrics exhibited substantial improvement, in-
dicating that agents had learned to adapt and employ dif-
ferent strategies in response to varied traffic flow settings.

8.1.2 Case II: Decision Process of MADDPG
E1 aimed to delve into the decision-making process of the
model. Her specific operations are illustrated in Fig. 6II.

Considering the decision process is stable in the test
episode, E1 conducted a comprehensive analysis. Initially,
she observed the metrics of the test episode in the Training
Distribution (Fig. 6A4). Despite the test episode not achiev-
ing the optimal performance, it remained within the normal
fluctuation range.

Then, within the Episode Overview, she selected two
time periods, as depicted in Fig. 6E1 and E2. These illus-
trations revealed a correlation between higher traffic flow
(darker green on the roads) and a higher probability (larger
area of the sectors) of activating green lights in correspond-
ing directions. Fig. 6E3 provided detailed insights into the
agents’ actions. For example, in the third stage in Fig. 6E3,
where the main traffic flow was in the W-E direction (Ta-
ble 1), the area of green bands (indicating turning on the
green light in the W-E direction) significantly exceeded that
of purple bands. Regarding the inter-agent relationship, E1
observed that higher bars consisted of colors from other
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Fig. 6: Experts’ operations during the case study I and II. (A) Use the Training Distribution to compare different episodes.
(B) Analyze and compare the overview of agents’ policy in different episodes. (C) Replay agents’ actions with more details.
(D) Select a time range and explore the states of an agent. (E) Analyze how agents react to different traffic flows in the test
episode. (F) Explore the states of agent A0. (G) Reveal the decision-making process of agent A0.

agents, indicating that an agent’s action was significantly
influenced by others (Fig. 6E4). She remarked, “Agents tend
to observe each other’s actions, reflecting the process of cooperation
among agents.”

Moving on to the projection of states, E1 examined the
projections of each agent separately and found that the
results could be roughly divided into four clusters based
on locations and rewards. Taking agent A0 as an example,
four clusters were highlighted with red rectangles (Fig. 6F).
To compare differences within these clusters, she zoomed in
on each cluster and observed the glyph in Fig. 6F1 − F4.
Comparing the time step and traffic flow of the states in
each cluster, she discovered that states within the same
cluster were highly similar. Considering the traffic flow in
the middle of a stage is stable without interference, she
chose the middle time steps of the four traffic flow stages
(200, 600, 1000, and 1400) for further exploration.

E1 conducted a detailed analysis of A0’s decision process
at four representative time steps, utilizing the Snapshot Log
to save snapshots for easy comparison of agents’ decision
processes under different states. She identified A1A0 and
B0A0 as key features influencing the agents’ decisions at
each traffic flow stage (Fig. 6G). Upon comparing the values
of these features, she observed that the agent’s policy was
influenced by the number of vehicles in different directions.
For instance, at time step 200 (Fig. 6G1), the actor branch
considered the number of vehicles on A1A0 and B0A0,
with the value of B0A0 significantly higher than A1A0.
Consequently, the agent chose to allow vehicles in the W-E
direction to pass through the intersection. When the number
of vehicles in two directions was similar (time step 1000 in
Fig. 6G3), E1 delved deeper into how the critic guided the
model’s decision process.

E1 noted the chord diagram in Fig. 6G5, where the
chord from agent A1 to agent A0 was larger than other
chords. She remarked, “It seems that A1 has a greater impact
on A0 at this time.” Examining the critic tree in Fig. 6G3, she
found an evaluation of the agent’s action based on features
mainly related to agent A1 in the W-E direction (highlighted
with a green dashed rectangle), such as left1A1 and A1 W-
E prob. At this time step, A1 turned on the green light in
the W-E direction (A1 W-E prob) due to a higher number of
vehicles in the W-E direction (left1A1, B1A1). For agent A0,
maintaining the N-S direction green might interrupt A1 and
lead to congestion in A1’s N-S direction. Therefore, agent
A0 opted to turn on the green light in the W-E direction.

In conclusion, E1 concluded that the agent prioritizes
the direction with heavier traffic flow. In cases where traffic
situations are similar, the critic serves as a valuable aid
in decision-making based on other features. E1 remarked,
“This looks like priority control in TSC, where traffic lights stay
green for the main road until there are too many vehicles waiting
in the side road.”

8.1.3 Case III: Anomaly Detection of the MARL model

Identification of Abnormal Episode. When E6 explored the
training process in the Training Distribution, he found an
unusual episode 17. As shown in Fig. 2B, the speed loss of
episode 17 was very low, but the reward has not reached the
optimal level. He sorted episodes immediately according to
speed loss in the training distribution (Fig. 2B1). He noticed
that the speed loss of episode 17 was the lowest in the train-
ing process. To understand what caused this phenomenon,
he selected episode 17 and explored it further in the Episode
Overview (Fig. 2C) and the Episode Detail (Fig. 2D).
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Fig. 7: Experts’ operations to explore abnormal vehicles. (A) Identify abnormal vehicles during exploration. (B) Vehicles got
stuck in intersection B1 and the expert selected the time step when the agent changed the traffic signal. (C) The decision-
making process of agent B1.

At first, for some agents, the size of sectors in the W-
E direction is much larger than sectors in the N-S direc-
tion (Fig. 2C2), which means those agents keep the green
light in the W-E direction on, even the main traffic flows are
in the N-S direction. In the Episode Detail, he focused on
the metrics and traffic signal phases in Fig. 2D. As shown
in the right part of Fig. 2D, both agents A1 and B1 had
a long green band. They all adopted the strategy of only
allowing vehicles in W-E directions throughout the episode.
Except for A0, the reward and critic value of the agents
went down rapidly over time. Then, he checked the states
of A1 and B1 in Fig. 2D2, the projection was distributed
in a chain. There were many light circles in Fig. 2D2,
which indicated low reward. Since the state’s distribution
of A1 and B1 were similar, E6 took A1 as an example for
analysis. After zooming in, those light circles turned into
glyphs in Fig. 2D3. The large purple sectors in the N-S
direction demonstrated there were more vehicles in the N-
S direction. Considering the Shapley values in Fig. 2D1, he
realized that agents focused on its entry in the N-S direction
(A2A1). Combined with the Simulation Replay (Fig. 2F2),
E6 noticed that the N-S direction was extremely congested
because the W-E direction is always allowed to pass. Due
to the congestion in the N-S direction, many vehicles were
even blocked inside the intersection. This also caused traffic
congestion in the W-E direction framed in Fig. 2F2. He
thought that the long-term congestion in the N-S direction
greatly reduces the reward, making this N-S feature the
most important one. To answer why the 17 episode has the
lowest speed loss with poor performance, he concluded, “In
this episode, most of the traffic flow in the W-E direction
maintained smooth. The speed loss of them was 0 at most
time steps. This greatly reduced the speed loss of the entire
road network.” He added, “Compared with earlier episodes,
the metrics of episode 17 are better but its strategy is very
extreme. In the past, we could only write programs to judge
by ourselves, but now we can find out more quickly with
the help of the system.”

Find Abnormal Vehicles. In the test episode, E6 wanted
to explore how agents’ strategy changes with the traffic con-
dition according to the Episode Overview. After he selected
a time period in Fig. 7A1, he found there were a few vehicles
in the W-E direction of the road network (highlighted by the
red rectangle in Fig. 7A2). “At first, I thought these vehicles
were remnants of the previous stages and would leave the

road network soon, since the current stages only had traffic
flows in the N-S direction.” However, after he checked
each intersection one by one. He found some vehicles got
stuck in agent B1’s intersection. Those abnormal vehicles
are demonstrated in Fig. 7B1 and B2. Next, he used the
Episode Detail to select the time step when B1 changed
its traffic signal phase (Fig. 7B3). In the chord diagram in
Fig. 7C1, a chord from A1 to B1 and a chord from B0 to
B1 show that B1’s surrounding intersections A1 and B0 had
an influence on its decision. Then he moved to the decision
process with more detail in Fig. 7C2. For the critic of B1
in Fig. 7C3, he observed there were many vehicles in the
N-S directions (A2A1). In the W-E direction in Fig. 7C4, he
noticed two roads (C0B0 and C1B1). Especially, C1B1 is one
of the entries of B1’s intersection and there was no vehicle
on C1B1 at this time step. Although the critic of B1 got global
information including one of its entries (C1B1) as well as its
surrounding intersections, it still ignored there were a few
vehicles got stuck in A1B1 (Fig. 7B1) and thought highly
of B1’s action in Fig. 7C5. Similarly, for the actor of B1, it
only focused on the vehicles on C1B1 to make the decision
Fig. 7C6. “That’s an interesting result, which shows why
the model made a mistake at this time. One agent tends to
pay more attention to the main traffic flows. As a result,
vehicles in other traffic flows may be neglected. This may
lead to unreasonable waiting time in the real world.” To
avoid this problem, E6 recommended adding more rules,
such as considering the waiting time of the vehicle in the
reward function or setting a time limit for each traffic signal
phase according to traffic flow.

To sum up, case III proves: (1) the limitations of judging
the model training effects from certain metrics and the effec-
tiveness of MARLens for identifying the abnormal situation.
(2) MARLens has the potential to enable users to quickly find
abnormal situations and explain why the model made the
decision in a given state, which can provide suggestions for
model improvement in the future.

8.2 Expert Interview

We organized individual interviews with experts E1-E6
(their background has been introduced at the beginning
of Section 4.1). First, we briefly introduced our system and
provided a simple tutorial to demonstrate the visual design
and interactions of MARLens. Next, experts could explore
the system for about an hour. Then we carried out an
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individual interview for each expert. Each interview lasted
about 30 minutes and we collected their feedback as follows:

System Designs. Generally, all experts agreed that our
system is useful to explore and strengthen the interpretabil-
ity of RL-based TSC problems. After the simple tutorial,
they could easily understand the purpose and meaning
of our visual designs. They thought our system provides
enough information to track the RL model’s training process
and agents’ behaviors. “I can easily observe agents’ reactions
to different traffic conditions and directly compare how agents’
strategies change over episodes.”, said E3. Some experts men-
tioned that the existing tools, such as TensorBoard, cannot
provide friendly support to combine traffic simulation plat-
forms, which makes it hard to analyze RL models’ decision-
making process under a certain state. Besides, E1 said that
“sometimes we need to design a segmented reward function
according to traffic condition. The Policy Explainer Module can
provide suggestions on setting the threshold of segmentation.”

Usability and Suggestions. Generally, experts approved
that the modules of MARLens are user-friendly. It may be
not easy to understand some visual designs at first glance,
but after the simple tutorial, they could easily understand
the purpose and meaning of our visual designs. Moreover,
they agreed that MARLens provides a multi-level analysis
for a MARL-based TSC model. “It’s insufficient to evalu-
ate the model only based on metrics. MARLens is useful to
understand the model more comprehensively.”, said E5. Many
experts approved that the findings at different levels are
interesting, especially in exploring abnormal situations. For
the Episode Detail, E6 can easily get the main idea of the
visual design of the Episode Detail, but the middle part
can be more intuitive (Fig. 2D2). “The state glyph can be
turned into a real intersection.” In addition, he said that we
can add more connections between the Episode Detail and
the Simulation Replay, such as showing reward in traffic
simulation directly. E1 suggested that the system can take
more factors into account.“The mixed traffic flow of different
vehicles and traffic rules can affect how traffic conditions change.
Further, she valued the potential of the system to guide
RL model design in the future. She said that “The relation
between agent and environment can guide us to design action and
reward function. How the reward functions influence an agent’s
behaviors is worthy of further exploration.”

8.3 User Study

A user study is conducted to further evaluate MARLens in
terms of system workflow, visual design, and system usability.

Participants. We invited 10 participants (3 females, 7
males, agemean=24.1, agestd=1.59) majoring in traffic engi-
neering from a local university. All participants possessed
basic knowledge in TSC and RL. Specifically, 9 of them
were master’s students, while 1 participant was pursuing
a doctoral degree. Their familiarity with RL and traffic
simulation software, applied in their respective research
areas such as TSC and autonomous driving, made them
ideal candidates as target users for our system. The selec-
tion of these participants was strategic, as they could offer
valuable insights into the practice of RL models. The user
study was conducted in a face-to-face setting. We presented
and demonstrated our system to the participants, who then

actively engaged with the system to complete various tasks.
Following the interactions, we utilized questionnaires to
systematically gather feedback and suggestions from the
participants, aiming to capture their perspectives on the
usability and functionality of our system.

Tasks. In this user study, participants were tasked with
completing three assignments. The outlined tasks are as
follows: (1)Task 1: Describe Model Training. In this task,
participants were instructed to articulate the trend of the
training process based on metrics and evaluate the perfor-
mance of the model. (2)Task 2: Episode Exploration. Partic-
ipants were asked to select the last episode and describe
the characteristics(action sequences, reactions to different
traffic flows, states, et al.) and relationships among different
agents. They were also encouraged to compare different
episodes and synthesize observations on how agents evolve
throughout episodes. (3)Task 3: Understand Decision Pro-
cess. In this task, participants were tasked with choosing a
state and elucidating the decision-making process of the RL
model according to features and the value of the features.

Procedure. Initially, we provided participants with an
overview of the traffic simulation settings, essential defini-
tions of the example RL model, visual design components,
workflow, and the system’s overarching framework. Follow-
ing this introduction, we conducted a comprehensive 20-
minute demonstration of the system, delving into detailed
explanations of each view’s functions and visual design
elements. Subsequently, participants had the opportunity to
operate the system themselves and seek assistance from us
as needed. Once participants felt comfortable, they were
tasked with completing the aforementioned assignments
using our system. Upon the completion of all tasks, par-
ticipants were required to fill out a questionnaire featuring
Likert scale questions. The Likert scale employed for the
questionnaire ranges from 1 to 7, where 1 denotes “strongly
disagree”, and 7 indicates “strongly agree”.

Results. The results of the questionnaires are depicted in
Fig. 8, indicating that participants held a favorable opinion
of MARLens. Notably, the average score for each question
surpassed 5.7. Regarding the system workflow, participants
expressed satisfaction with their ability to comprehend the
RL model’s training process swiftly and efficiently select
target episodes. The system was lauded for facilitating ex-
ploration of different states and comparisons among agents.
In terms of visual design, the system was praised for fur-
nishing ample information to support multi-level analysis,
enabling participants to gain a comprehensive understand-
ing of the RL model and identify patterns during training.
Specific commendation was directed towards the design in
Fig. 4c. One participant remarked, “Once I used the traditional
diagram to compare traffic signal phases of different intersections
in a road network. The diagram became too long at last, which
made it hard to read and could easily lead to misunderstandings.
While participants generally found the system’s modules
well-organized for usability, there were suggestions for im-
provement. Some participants recommended providing an
overview of each state cluster. In terms of system usabil-
ity, participants broadly agreed that the different modules
were well-organized, enhancing their understanding of the
MARL model in the TSC scenario. Additionally, some par-
ticipants expressed a desire for more typical TSC scenarios
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Fig. 8: The result of questionnaires. 1-7 represents “strongly disagree” to “strongly agree” for each statement.

as examples and requested support for additional user-
customized options.

9 DISCUSSION AND LIMITATION

Improvements on the Current Workflow. Based on the
case study and interviews with domain experts, MARLens
enhances researchers’ workflow in three aspects. First, it
offers a multi-level analysis of the model, which stands
in contrast to the prevalent reliance on metrics and line
charts for evaluating model performance. This expanded
perspective allows researchers to comprehensively explore
and analyze the model across varying time granularities,
thereby enhancing their understanding. Second, MARLens
significantly reduces the time required for researchers to
unearth pertinent information. Handling high-dimensional
data, such as states and traffic conditions, often presents
challenges for researchers seeking to leverage them effec-
tively for model exploration and evaluation. Researchers
now can easily compare time series data generated by
each agent within both the Episode Overview and Episode
Detail. Last, the interpretability of the MARL model in the
domain of TSC has received less attention in comparison to
model performance. MARLens addresses this by striving to
reveal the decision process of the MARL model, offering an
intuitive means for researchers to comprehend the model
and provide valuable guidance for future enhancements.

Effective Communication with Domain Experts. De-
spite the extensive research conducted by experts E1-E6 in
RL-based TSC, their understanding of interpretability and
visualization has been limited, leading to communication
challenges. To address this, we have implemented strategies
to enhance communication efficiency. First, in terms of visu-
alization, experts typically utilized simplistic diagrams like
line charts and traffic light phase diagrams during research,
as depicted in Fig. 4a. However, obtaining direct visual
design requirements proved challenging. To overcome this,
we introduced visualization cases from previous studies up-
front, aiding experts in grasping the utility of visualization.
Second, there existed a gap in the comprehension of inter-
pretability. Initially, experts perceived interpretability as the
integration of RL models with traditional theories in the TSC
domain, lacking familiarity with commonly used model-
agnostic techniques for explainable ML. Consequently, we
provided an accessible introduction to interpretable tech-
niques, with a primary focus on their practical usage. Last,
in system development, experts faced challenges in spec-
ifying their visual design and interaction preferences. To
address this issue, we adopted a rapid iteration approach,
engaging in frequent communication with experts to opti-
mize the system iteratively.

Scalability and Generalizability. Currently, our exper-
iments employ a 2×2 grid network and a straightforward
traffic flow setting, a configuration widely accepted in the
traffic domain and endorsed by our domain experts. Realiz-
ing the necessity to incorporate more intersections (agents)
for real-life applications, we acknowledge that while our
existing designs can handle additional agents to some extent
- such as the seamless addition of new agent information
to the radical and top-down layout in the Episode Detail
- more effective strategies merit exploration. Consequently,
given that MARLens is centered on TSC, its visual design
could potentially be adapted for other traffic-related tasks.
For example, the design in Fig. 4c could facilitate the exami-
nation of traffic congestion and the coordination of different
traffic signals. In terms of the utility of our system in other
RL problems, the methods we used to interpret MARL
models are model-agnostic, eliminating the need for users to
integrate new structures into their MARL models. Although
MARLens focuses on TSC, the tree-based design in the Policy
Explainer has less connection with TSC scenario, which can
be used in other RL-based tasks.

Real-world Deployment of MARLens. In contrast to
computer vision domains, RL-based TSC models do not
require extensive processing of complex visual data, thereby
reducing the computational resource requirements signifi-
cantly. Since training RL-based TSC models can be time-
consuming, MARLens collects data throughout the model
training process, eliminating the need for separate training
or testing phases in our system. For the expert interviews
and the user study, we have already deployed the system
on various desktops and laptops, and generally, the overall
operation is quite smooth.

Learning Curve and Evaluation. MARLens is designed
for RL and TSC researchers aiming to enhance their under-
standing of MARL-based TSC. Through expert interviews
and the user study, we dedicated more time to explaining
the Episode Detail and the Policy Explainer due to their
involvement with algorithmic interpretations of the model.
Overall, users already familiar with RL-based TSC find it
easier to grasp MARLens, while others may require a bit
more time. Following a brief tutorial lasting approximately
20 minutes, users can comprehend the design objectives of
different components and believe that MARLens facilitates a
more comprehensive understanding of the model. As for
evaluating our system, existing tools commonly used by
researchers, such as CityFlow and SUMO, primarily serve as
programming frameworks for RL model development and
traffic simulation. To the best of our knowledge, there is no
directly comparable system to MARLens, which limits our
ability to provide a more extensive evaluation of our system.
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10 CONCLUSION AND FUTURE WORK

In this study, we present MARLens to aid traffic and RL
researchers in gaining a deeper, more comprehensible un-
derstanding of RL-based TSC issues. We identify a range of
metrics for extracting key traffic information from the RL
model. Our approach involves presenting and scrutinizing
the RL model from various perspectives and dimensions,
incorporating a traffic simulation module. We employed
SHAP and decision tree techniques to demonstrate the
relationships among different agents, shedding light on the
decision process of the RL model. To assess the efficacy
and user-friendliness of our system, we conducted three
case studies, interviewed domain experts, and conducted a
user study. The results validate that MARLens significantly
enhances users’ ability to explore the interpretability of RL-
based TSC models. Looking ahead, we plan to involve more
end users and evaluate the long-term utility of MARLens.
In addition, we aim to offer more customization options
and add introduce a model comparison module to enhance
direct comparisons between various RL-based TSC models.

ACKNOWLEDGMENTS

This work is supported by grants from the National Natural
Science Foundation of China (No. 62302531) and the Science
and Technology Planning Project of Guangdong Province
(No. 2023B1212060029).

REFERENCES

[1] Z. Deng, D. Weng, S. Liu, Y. Tian, M. Xu, and Y. Wu, “A survey of
urban visual analytics: Advances and future directions,” Computa-
tional Visual Media, vol. 9, no. 1, pp. 3–39, 2023.

[2] J. I. Levy, J. J. Buonocore, and K. Von Stackelberg, “Evaluation
of the public health impacts of traffic congestion: a health risk
assessment,” Environmental Health, vol. 9, pp. 1–12, 2010.

[3] T. Tan, F. Bao, Y. Deng, A. Jin, Q. Dai, and J. Wang, “Cooperative
deep reinforcement learning for large-scale traffic grid signal con-
trol,” IEEE Transactions on Cybernetics, vol. 50, no. 6, pp. 2687–2700,
2019.

[4] F. Mao, Z. Li, and L. Li, “A comparison of deep reinforcement
learning models for isolated traffic signal control,” IEEE Intelligent
Transportation Systems Magazine, 2022.

[5] H. Wei, G. Zheng, V. Gayah, and Z. Li, “Recent advances in rein-
forcement learning for traffic signal control: A survey of models
and evaluation,” ACM SIGKDD Explorations Newsletter, vol. 22,
no. 2, pp. 12–18, 2021.

[6] H. Wei, G. Zheng, H. Yao, and Z. Li, “Intellilight: A reinforcement
learning approach for intelligent traffic light control,” in Proceed-
ings of SIGKDD, 2018, pp. 2496–2505.

[7] H. Wei, C. Chen, G. Zheng, K. Wu, V. Gayah, K. Xu, and Z. Li,
“Presslight: Learning max pressure control to coordinate traffic
signals in arterial network,” in Proceedings of SIGKDD, 2019, pp.
1290–1298.

[8] B. Xu, Y. Wang, Z. Wang, H. Jia, and Z. Lu, “Hierarchically
and cooperatively learning traffic signal control,” in Proceedings
of AAAI, vol. 35, no. 1, 2021, pp. 669–677.

[9] J. Yuan, C. Chen, W. Yang, M. Liu, J. Xia, and S. Liu, “A survey of
visual analytics techniques for machine learning,” Computational
Visual Media, vol. 7, pp. 3–36, 2021.

[10] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu, “Towards better
analysis of deep convolutional neural networks,” IEEE Transactions
on Visualization and Computer Graphics, vol. 23, no. 1, pp. 91–100,
2016.

[11] Z. J. Wang, R. Turko, O. Shaikh, H. Park, N. Das, F. Hohman,
M. Kahng, and D. H. P. Chau, “Cnn explainer: learning con-
volutional neural networks with interactive visualization,” IEEE
Transactions on Visualization and Computer Graphics, vol. 27, no. 2,
pp. 1396–1406, 2020.

[12] L. Gou, L. Zou, N. Li, M. Hofmann, A. K. Shekar, A. Wendt, and
L. Ren, “Vatld: A visual analytics system to assess, understand and
improve traffic light detection,” IEEE Transactions on Visualization
and Computer Graphics, vol. 27, no. 2, pp. 261–271, 2020.

[13] Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and H. Qu,
“Understanding hidden memories of recurrent neural networks,”
in Proceedings of VAST. IEEE, 2017, pp. 13–24.

[14] H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush, “Lstmvis:
A tool for visual analysis of hidden state dynamics in recurrent
neural networks,” IEEE Transactions on Visualization and Computer
Graphics, vol. 24, no. 1, pp. 667–676, 2017.

[15] D. Bau, J.-Y. Zhu, H. Strobelt, B. Zhou, J. B. Tenenbaum, W. T.
Freeman, and A. Torralba, “Gan dissection: Visualizing and
understanding generative adversarial networks,” arXiv preprint
arXiv:1811.10597, 2018.

[16] M. Kahng, N. Thorat, D. H. Chau, F. B. Viégas, and M. Wattenberg,
“Gan lab: Understanding complex deep generative models using
interactive visual experimentation,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 25, no. 1, pp. 310–320, 2018.

[17] J. Wang, L. Gou, H. Yang, and H.-W. Shen, “Ganviz: A visual
analytics approach to understand the adversarial game,” IEEE
Transactions on Visualization and Computer Graphics, vol. 24, no. 6,
pp. 1905–1917, 2018.

[18] L. Wells and T. Bednarz, “Explainable ai and reinforcement learn-
ing—a systematic review of current approaches and trends,” Fron-
tiers in Artificial Intelligence, vol. 4, p. 550030, 2021.

[19] J. Wang, L. Gou, H.-W. Shen, and H. Yang, “Dqnviz: A visual ana-
lytics approach to understand deep q-networks,” IEEE Transactions
on Visualization and Computer Graphics, vol. 25, no. 1, pp. 288–298,
2018.

[20] J. Wang, W. Zhang, H. Yang, C.-C. M. Yeh, and L. Wang, “Visual
analytics for rnn-based deep reinforcement learning,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 28, no. 12, pp.
4141–4155, 2021.

[21] Y. Metz, E. Bykovets, L. Joos, D. Keim, and M. El-Assady, “Visitor:
Visual interactive state sequence exploration for reinforcement
learning,” in Computer Graphics Forum, vol. 42, no. 3. Wiley Online
Library, 2023, pp. 397–408.

[22] W. He, T.-Y. Lee, J. van Baar, K. Wittenburg, and H.-W. Shen, “Dy-
namicsexplorer: Visual analytics for robot control tasks involving
dynamics and lstm-based control policies,” in Proceedings of IEEE
Pacific Visualization Symposium. IEEE, 2020, pp. 36–45.

[23] R. Luo, W. Ni, and H. Tian, “Visualizing multi-agent reinforcement
learning for robotic communication in industrial iot networks,” in
Proceedings of IEEE Conference on Computer Communications Work-
shops. IEEE, 2022, pp. 1–2.

[24] S. Cheng, X. Li, G. Shan, B. Niu, Y. Wang, and M. Luo, “Acmviz:
a visual analytics approach to understand drl-based autonomous
control model,” Journal of Visualization, pp. 1–16, 2022.

[25] E. Saldanha, B. Praggastis, T. Billow, and D. L. Arendt, “Relvis:
Visual analytics for situational awareness during reinforcement
learning experimentation.” in Proceedings of EuroVis (Short Papers),
2019, pp. 43–47.

[26] A. Mishra, U. Soni, J. Huang, and C. Bryan, “Why? why not?
when? visual explanations of agent behaviour in reinforcement
learning,” in Proceedings of PacificVis. IEEE, 2022, pp. 111–120.

[27] T. Kravaris, K. Lentzos, G. Santipantakis, G. A. Vouros, G. An-
drienko, N. Andrienko, I. Crook, J. M. C. Garcia, and E. I. Martinez,
“Explaining deep reinforcement learning decisions in complex
multiagent settings: towards enabling automation in air traffic
flow management,” Applied Intelligence, vol. 53, no. 4, pp. 4063–
4098, 2023.

[28] X. Shi, J. Zhang, Z. Liang, and D. Seng, “Maddpgviz: a visual
analytics approach to understand multi-agent deep reinforcement
learning,” Journal of Visualization, pp. 1–17, 2023.

[29] A. L. Bazzan, “Opportunities for multiagent systems and multia-
gent reinforcement learning in traffic control,” Autonomous Agents
and Multi-Agent Systems, vol. 18, pp. 342–375, 2009.

[30] P. Hunt, D. Robertson, R. Bretherton, and R. Winton,
“Scoot-a traffic responsive method of coordinating signals,”
Tech. Rep., 1981. [Online]. Available: https://cir.nii.ac.jp/crid/
1570009749344348928

[31] P. Lowrie, “Scats, sydney co-ordinated adaptive traffic system: A
traffic responsive method of controlling urban traffic,” 1990.

[32] F. I. Shashi, S. M. Sultan, A. Khatun, T. Sultana, and T. Alam, “A
study on deep reinforcement learning based traffic signal control

https://cir.nii.ac.jp/crid/1570009749344348928
https://cir.nii.ac.jp/crid/1570009749344348928


IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 16

for mitigating traffic congestion,” in Proceedings of ECBIOS. IEEE,
2021, pp. 288–291.

[33] S. Zhancheng, “Research on application of deep reinforcement
learning in traffic signal control,” in Proceedings of ICFSP, 2021,
pp. 17–21.

[34] C. Chouiekh, A. Yahyaouy, A. Aarab, and A. Sabri, “Road traffic:
Deep q-learning agent control traffic lights in the intersection,” in
Proceedings of ISCV, 2022, pp. 1–5.

[35] Y. Wang, T. Xu, X. Niu, C. Tan, E. Chen, and H. Xiong, “Stmarl:
A spatio-temporal multi-agent reinforcement learning approach
for cooperative traffic light control,” IEEE Transactions on Mobile
Computing, vol. 21, no. 6, pp. 2228–2242, 2022.

[36] H. Wei, N. Xu, H. Zhang, G. Zheng, X. Zang, C. Chen, W. Zhang,
Y. Zhu, K. Xu, and Z. Li, “Colight: Learning network-level coop-
eration for traffic signal control,” in Proceedings of CIKM, 2019, pp.
1913–1922.

[37] A. Adadi and M. Berrada, “Peeking inside the black-box: A survey
on explainable artificial intelligence (xai),” IEEE Access, vol. 6, pp.
52 138–52 160, 2018.

[38] E. Tjoa and C. Guan, “A survey on explainable artificial intel-
ligence (xai): Toward medical xai,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 32, no. 11, pp. 4793–4813, 2021.

[39] S. Milani, N. Topin, M. Veloso, and F. Fang, “A survey of explain-
able reinforcement learning,” arXiv preprint arXiv:2202.08434, 2022.

[40] B. Hayes and J. A. Shah, “Improving robot controller transparency
through autonomous policy explanation,” in Proceedings of HRI,
2017, pp. 303–312.

[41] S. G. Rizzo, G. Vantini, and S. Chawla, “Reinforcement learning
with explainability for traffic signal control,” in Proceedings of IEEE
Intelligent Transportation Systems Conference. IEEE, 2019, pp. 3567–
3572.

[42] S. M. Lundberg and S.-I. Lee, “A unified approach to interpret-
ing model predictions,” Advances in Neural Information Processing
Systems, vol. 30, 2017.

[43] J. Wang, Y. Zhang, T.-K. Kim, and Y. Gu, “Shapley q-value: A local
reward approach to solve global reward games,” in Proceedings of
AAAI, vol. 34, no. 05, 2020, pp. 7285–7292.

[44] N. Topin and M. Veloso, “Generation of policy-level explanations
for reinforcement learning,” in Proceedings of AAAI, vol. 33, no. 01,
2019, pp. 2514–2521.

[45] Y. Guo, J. Campbell, S. Stepputtis, R. Li, D. Hughes, F. Fang, and
K. Sycara, “Explainable action advising for multi-agent reinforce-
ment learning,” arXiv preprint arXiv:2211.07882, 2022.

[46] S. Wollenstein-Betech, C. Muise, C. G. Cassandras, I. C. Pascha-
lidis, and Y. Khazaeni, “Explainability of intelligent transportation
systems using knowledge compilation: a traffic light controller
case,” in Proceedings of IEEE International Conference on Intelligent
Transportation Systems. IEEE, 2020, pp. 1–6.

[47] L. Schreiber, G. d. O. Ramos, and A. L. Bazzan, “Towards ex-
plainable deep reinforcement learning for traffic signal control,”
in Proceedings of LatinX in AI Workshop@ ICML 2021, LXAI. LXIA,
2021.

[48] T. Jaunet, R. Vuillemot, and C. Wolf, “Drlviz: Understanding de-
cisions and memory in deep reinforcement learning,” in Computer
Graphics Forum, vol. 39, no. 3. Wiley Online Library, 2020, pp.
49–61.

[49] M. Noaeen, A. Naik, L. Goodman, J. Crebo, T. Abrar, Z. S. H.
Abad, A. L. Bazzan, and B. Far, “Reinforcement learning in urban
network traffic signal control: A systematic literature review,”
Expert Systems with Applications, vol. 199, p. 116830, 2022.

[50] G. Zheng, X. Zang, N. Xu, H. Wei, Z. Yu, V. Gayah, K. Xu,
and Z. Li, “Diagnosing reinforcement learning for traffic signal
control,” arXiv preprint arXiv:1905.04716, 2019.

[51] H. Wei, G. Zheng, V. Gayah, and Z. Li, “A survey on traffic signal
control methods,” arXiv preprint arXiv:1904.08117, 2019.

[52] P. Mannion, J. Duggan, and E. Howley, “An experimental review
of reinforcement learning algorithms for adaptive traffic signal
control,” Autonomic Road Transport Support Systems, pp. 47–66,
2016.

[53] I. Arel, C. Liu, T. Urbanik, and A. G. Kohls, “Reinforcement
learning-based multi-agent system for network traffic signal con-
trol,” IET Intelligent Transport Systems, vol. 4, no. 2, pp. 128–135,
2010.

[54] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mor-
datch, “Multi-agent actor-critic for mixed cooperative-competitive
environments,” Advances in Neural Information Processing Systems,
vol. 30, 2017.

[55] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep rein-
forcement learning,” arXiv preprint arXiv:1509.02971, 2015.

[56] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru,
J. Aru, and R. Vicente, “Multiagent cooperation and competition
with deep reinforcement learning,” PloS One, vol. 12, no. 4, p.
e0172395, 2017.

[57] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster,
and S. Whiteson, “Monotonic value function factorisation for
deep multi-agent reinforcement learning,” The Journal of Machine
Learning Research, vol. 21, no. 1, pp. 7234–7284, 2020.

[58] G. Paczolay and I. Harmati, “A new advantage actor-critic al-
gorithm for multi-agent environments,” in Proceedings of ISMCR,
2020, pp. 1–6.
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